Enlight NPU :: Model Zoo

Classification Networks

ImageNet Results

Model Name Type Input Size Top1 Acc (FP32) Top5 Acc (FP32) Top1 Acc (INT8) Top5 Acc (INT8) Giga MAC Preview Source
mobilenet_v2 TFLITE 224x224 71.090 90.272 69.738 89.482 0.3 google
mobilenet_v2 ONNX 224x224 71.190 90.206 68.966 88.676 0.3 torchvision
mobilenet_v2 ONNX 224x224 70.958 89.938 69.422 88.912 0.4 onnx
mobilenet_v2_1.4 TFLITE 224x224 74.184 91.920 74.180 91.922 0.6 google
resnet18 ONNX 224x224 68.918 88.826 67.002 87.628 1.8 torchvision
resnet34 ONNX 224x224 72.770 90.966 71.020 90.024 3.7 torchvision
resnet50 ONNX 224x224 75.590 92.784 74.216 91.922 4.1 torchvision
efficientnet-lite-b0 TFLITE 224x224 73.558 91.578 71.606 90.522 1.7 google

Object Detection Networks

VOC2007 Results

Model Name Type Input Size mAP (FP32) mAP (INT8) Giga MAC Preview Source
ssd_mobilenet_v2 ONNX 300x300 70.7 70.1 0.7 preview in-house
320x320 0.8
512x512 74.8 74.0 1.9
YOLOv2-voc* DarkNet 416x416 75.5 74.8 14.7 in-house
YOLOv2-tiny-voc DarkNet 416x416 55.6 55.4 3.5 cfg, weights

* YOLOv2 is trained after replacing buggy reorg layer to reorg3d layer.

COCO2017 Results

Model Name Type Input Size AP (FP32) AP (INT8) Giga MAC Preview Source
ssd_mobilenet_v2_320x320 TFLITE 320x320 33.6@IoU=0.5
19.2@IoU=0.5:0.95
link
YOLOv2* DarkNet 416x416 54.8@IoU=0.5
28.2@IoU=0.5:0.95
54.2@IoU=0.5
27.5@IoU=0.5:0.95
31.5 in-house
YOLOv2-tiny DarkNet 416x416 25.9@IoU=0.5
10.0@IoU=0.5:0.95
25.5@IoU=0.5
9.7@IoU=0.5:0.95
2.7 cfg, weights
YOLOv3 DarkNet 320x320 62.7@IoU=0.5
34.6@IoU=0.5:0.95
62.9@IoU=0.5
34.6@IoU=0.5:0.95
19.5 cfg, weights
416x416 67.1@IoU=0.5
37.6@IoU=0.5:0.95
67.7@IoU=0.5
37.9@IoU=0.5:0.95
32.9
608x608 68.0@IoU=0.5
38.3@IoU=0.5:0.95
68.9@IoU=0.5
38.7@IoU=0.5:0.95
70.3
YOLOv3-tiny DarkNet 416x416 20.0@IoU=0.5
9.3@IoU=0.5:0.95
19.7@IoU=0.5
9.1@IoU=0.5:0.95
2.5 cfg, weights
YOLOv3-spp DarkNet 608x608 69.9@IoU=0.5
42.0@IoU=0.5:0.95
69.3@IoU=0.5
41.3@IoU=0.5:0.95
70.7 cfg, weights
YOLOv4 DarkNet 320x320 62.5@IoU=0.5
39.7@IoU=0.5:0.95
62.2@IoU=0.5
39.0@IoU=0.5:0.95
17.8 cfg, weights
416x416 70.5@IoU=0.5
46.1@IoU=0.5:0.95
70.2@IoU=0.5
45.3@IoU=0.5:0.95
30.1
512x512 73.6@IoU=0.5
48.8@IoU=0.5:0.95
72.9@IoU=0.5
47.8@IoU=0.5:0.95
45.5
608x608 74.6@IoU=0.5
49.8@IoU=0.5:0.95
74.3@IoU=0.5
48.5@IoU=0.5:0.95
64.2
YOLOv4-csp DarkNet 512x512 64.2@IoU=0.5
45.2@IoU=0.5:0.95
63.8@IoU=0.5
43.6@IoU=0.5:0.95
38.5 cfg, weights
608x608 65.4@IoU=0.5
46.2@IoU=0.5:0.95
65.0@IoU=0.5
44.5@IoU=0.5:0.95
45.7
YOLOv4-tiny DarkNet 416x416 41.4@IoU=0.5
21.4@IoU=0.5:0.95
40.7@IoU=0.5
20.7@IoU=0.5:0.95
3.5 cfg, weights

* YOLOv2 is trained after replacing buggy reorg layer to reorg3d layer.

Semantic Segmentation Networks

Cityscape Results

Model Name Type Input Size mIoU / Pixel Acc / Mean Acc (FP32) mIoU / Pixel Acc / Mean Acc (INT8) Giga MAC Preview Source
PIDNet-S ONNX 2048x1024 78.1 / 96.1 / 85.8 77.9 / 96.0 / 85.6 50.5 link

Instance Segmentation Networks

COCO2017 Results

Model Name Type Input Size mask mAP* (FP32) mask mAP* (INT8) Giga MAC Preview Source
Yolact-MobileNetV2 ONNX 512x512 36.40@IoU=0.5
21.11@IoU=0.5:0.95
35.67@IoU=0.5
20.71@IoU=0.5:0.95
29.6 link
640x640 38.23@IoU=0.5
22.46@IoU=0.5:0.95
37.39@IoU=0.5
21.97@IoU=0.5:0.95
46.1

* mask mAP uses mask IoU instead of IoU

Face Detection Networks

Model Name Type Input Size Giga MAC Preview Source
Blaze Face TFLITE* 128x128 0.046 link

* TfLite model is converted from ProtoBuf model.

Pose Estimation Networks

COCO2017 Results

Model Name Type Input Size OKS (FP32) OKS (INT8) Giga MAC Preview Source
YOLO-pose ONNX 640x640 64.5 62.7 10.1 link

Lane Detection Networks

CULane Results

Model Name Type Input Size F1-Score (FP32) F1-Score (INT8) Giga MAC Preview Source
UFLD v1 ONNX 800x288 69.1 68.6 8.95 link

Monocular Depth Estimation Networks

KITTI Eigen Split Results

Model Name Type Input Size ARE (FP32) ARE (INT8) Giga MAC Preview Source
Monodepth2 ONNX 640x192 11.1 12.6 8.74 link

References